Original Article

A comparison of methods for determining urea distribution volume for routine use in on-line monitoring of haemodialysis adequacy

Elizabeth J. Lindley¹, Paul W. Chamney², Andreas Wuepper², Helen Ingles¹, James E. Tattersall¹ and Eric J. Will¹

¹Department of Renal Medicine, St James's University Hospital, Leeds, UK and ²Fresenius Medical Care, Research & Development, Bad Homburg, Germany

Abstract

Background. The availability of haemodialysis machines equipped with on-line clearance monitoring (OCM) allows frequent assessment of dialysis efficiency and adequacy without the need for blood samples. Accurate estimation of the urea distribution volume 'V' is required for Kt/V calculated from OCM to be consistent with conventional blood sample-based methods.

Methods. Ten stable HD patients were monitored monthly for 6 months. Time-averaged OCM clearance ($K_{\rm OCM}$) and pre- and post-dialysis blood samples were collected at each monitored session. The second generation Daugirdas formula was used to calculate the single-pool variable volume Kt/V, (Kt/V)_D. Values of V to allow comparison between OCM and blood-based Kt/V were determined from Watson's formula ($V_{\rm Watson}$), bioimpedance spectroscopy ($V_{\rm BIS}$), classical urea kinetic modelling ($V_{\rm UKM_C}$) and a simple computation of V ($V_{\rm UKM_S}$) from the blood-based Kt/V and $K_{\rm OCM}t$.

Results. Comparison of $K_{\rm OCM}t/V$ with $(Kt/V)_{\rm D}$ shows that using $V_{\rm Watson}$ leads to significant systematic underestimation of dialysis dose. $K_{\rm OCM}t/V_{\rm BIS}$ agrees with $(Kt/V)_{\rm D}$ to within \pm 10%. $K_{\rm OCM}t/V_{\rm UKM_S}$ is, by definition, identical to $(Kt/V)_{\rm D}$ when initially calculated. However, if a historical value of V is used, agreement between $K_{\rm OCM}t/V$ and $(Kt/V)_{\rm D}$ over 6 months varies by 5% for $V_{\rm BIS}$ and 10% for $V_{\rm UKM_S}$. **Conclusions.** When investigating the effect of different treatment strategies on dialysis efficiency, any estimate of V can be used provided it is constant, as K is the relevant parameter. When frequent supervision of actual dialysis dose is required, the greatest consistency between $K_{\rm OCM}t/V$ and the reference, $Kt/V_{\rm D}$, over time is achieved with $V_{\rm BIS}$.

Keywords: haemodialysis adequacy; on-line clearance monitoring; urea distribution volume; urea kinetic modelling

Correspondence and offprint requests to: Elizabeth J. Lindley, Department of Renal Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK. Tel: +44-113-206-4199; Fax: +44-113-206-6064; E-mail: Elizabeth.Lindley@leedsth.nhs.uk